
Fast computing of the positive
polarity Reed-Muller transform over

GF (2) and GF (3)
Valentin Bakoev

(University of V. Turnovo ”St. Cyril and St. Methodius”, Bulgaria)

and

Krassimir Manev
(University of Sofia ”St. Kliment Ohridski”, Bulgaria)

ACCT Pamporovo’08 – p. 1/32

1. Introduction

The known theorem of Zhegalkin states that any Boolean
functionf(xn−1, xn−2, . . . , x0) can be represented in an
unique way by itsZhegalkin polynomial:

f(xn−1, xn−2, . . . , x0) = a0 ⊕ a1x0 ⊕ a2x1 ⊕(1)
⊕a3x1x0 ⊕ . . . ⊕ aixj1xj2 . . . xjk

⊕ . . .

⊕a2n−1xn−1xn−2 . . . x0,

where the coefficientsai ∈ {0, 1}, 0 ≤ i ≤ 2n − 1.
Then-digit binary representation ofi is a characteristic
vector of the variables in the corresponding product, and
all variables arepositive(uncomplemented).

ACCT Pamporovo’08 – p. 2/32

1. Introduction

This canonical form is also known as
Positive Polarity Reed-Muller(PPRM) expansion.

When each variablexi, 0 ≤ i ≤ n − 1, in (1) appears
either uncomplemented, or complemented throughout,
we obtain aFixed Polarity Reed-Muller(FPRM)
expansion.

ACCT Pamporovo’08 – p. 3/32

1. Introduction

Let pi ∈ {0, 1} denotes the polarity ofxi:
if pi = 0 the polarity ispositive(xi is uncomplemented),
and
if pi = 1 the polarity isnegative(xi is complemented),
for 0 ≤ i ≤ n − 1.

The functionf(xn−1, xn−2, . . . , x0) has a FPRM
expansion of polarityp, 0 ≤ p ≤ 2n − 1, when the
integerp = pn−1pn−2 . . . p0(2) andpi is the polarity ofxi,
for i = n − 1, n − 2, . . . , 0.

ACCT Pamporovo’08 – p. 4/32

1. Introduction

The binary FPRM transform has many applications in:

digital logic design;

testability;

fault detection;

image compression;

error correcting codes;

Boolean function decomposition;

classification of logic functions;

development of models for decision diagrams, etc.

ACCT Pamporovo’08 – p. 5/32

1. Introduction

Because of the increasing interest in multiple-valued
logic (MVL), the binary FPRM expansion has been
extended to represent multiple-valued functions.
Their FPRM expansions have also many applications
in the just mentioned areas.

Every ternary functionf of n-variables can also be
represented by its canonical FPRM polynomial
expansions as:

ACCT Pamporovo’08 – p. 6/32

1. Introduction

fp(xn−1, xn−2, . . . , x0) =

3n
−1

∑

i=0

ai.x̂
kn−1

n−1 x̂
kn−2

n−2 . . . x̂k0

0 ,(2)

all additions and multiplications are inGF (3);

i is the decimal equivalent ofkn−1kn−2 . . . k0(3);

x̂j = xj + pj ∈ {xj, xj + 1, xj + 2} is the literal of
thej-th variable, in dependence of the polaritypj;

the polarity is given by the integerp,
0 ≤ p ≤ 3n − 1, so thatp = pn−1pn−2 . . . p0(3);

the coefficientai ∈ {0, 1, 2}, ai = ai(p);

x̂0
j = 1, x̂1

j = x̂j andx̂2
j = x̂j.x̂j.

ACCT Pamporovo’08 – p. 7/32

1. Introduction

Optimization of FPRM transforms is an important
problem in the area of logic design and spectral
transforms. It concerns development of methods for
determining the best FPRM representation of a given
function among all possible FPRM expansions of it.
The best is this one, which has minimal number of
product terms or minimal number of literals.
There are many approaches to perform such
optimization.

ACCT Pamporovo’08 – p. 8/32

1. Introduction

Here we consider the problem:
"A Boolean (or ternary) function is given by its vector of
functional values. Compute the vector of coefficients of
its PPRM expansion".

We represent three algorithms for fast solving of this
problem.

ACCT Pamporovo’08 – p. 9/32

2. Binary PPRM transform

The computing of binary FPRM transform is investigated
by many scientists:

Wu, Tran etc. use coefficient maps (Karnaugh maps
folding, whenn ≤ 6);

Almaini, Tan, Yang etc. apply tabular techniques;

Green, Harking, Porwik, Perkowski, Falkowski etc.
use coefficient matrices.

All they consider algorithms for computing of the PPRM
transform in particular.

ACCT Pamporovo’08 – p. 10/32

2. Binary PPRM transform

Let f be an-variable Boolean function, given by its
vector of valuesb = (b0, b1, . . . , b2n−1).
Theforward andinversePPRM transform between the
coefficient vectora = (a0, a1, . . . , a2n−1) of Eq. (1) and
the vectorb is defined by the2n × 2n matrixMn as:

aT = Mn.b
T , bT = M−1

n .aT over GF (2).(3)

The matrixMn is defined recursively, or by Kronecker
product:

ACCT Pamporovo’08 – p. 11/32

2. Binary PPRM transform

M1 =





1 0

1 1



 , Mn =





Mn−1 On−1

Mn−1 Mn−1



 ,(4)

or Mn = M1 ⊗ Mn−1 =
n

⊗

i=1

M1,

whereMn−1 is the corresponding transform matrix of
dimension2n−1 × 2n−1, andOn−1 is a2n−1 × 2n−1 zero
matrix. Mn = M−1

n overGF (2), so the forward and the
inverse transform are performed in an uniform way.

ACCT Pamporovo’08 – p. 12/32

2. Binary PPRM transform

In all papers known to us, there is not complete
description of an algorithm for computing of PPRM
transform, defined by Eq. (3) and (4). These equalities
are derived by Harking and computing of the transform
is illustrated by an example, almost the same is done by
Porwik. Almaini etc. derive some equalities, which
concern computing of the coefficients (i.e. coordinates
of the vectora) and relations between them.
Most of authors illustrate the computing of the PPRM
transform by its "butterfly" (or "signal flow") diagrams
only.

ACCT Pamporovo’08 – p. 13/32

2. Binary PPRM transform

Ten years ago we have proposed an algorithm for fast
computing of the PPRM transform (called by as
"Zhegalkin transform"). We developed this algorithm
independently of other authors, because their papers in
this area were unknown (unaccessible) to us at this time.

Here we propose another version of this algorithm,
created by the dynamic-programming approach. We also
comment its bit-wise implementation, which improves
significantly the previous time and space complexity.
The same approach will be applied for fast computing
of the PPRM transform overGF (3).

ACCT Pamporovo’08 – p. 14/32

2. Binary PPRM transform

Using Eq. (4), we can rewrite Eq. (3) as:

aT = Mn.b
T =





Mn−1 On−1

Mn−1 Mn−1









bT
[0]

bT
[1]



 =(5)

=





Mn−1.b
T
[0]

Mn−1.b
T
[0] ⊕ Mn−1.b

T
[1]



 =





aT
[0]

aT
[1]



 ,

wherev[0] (resp.v[1]) denotes the sub-vector of the
n-dimensional binary vectorv, which coordinates are
labeled byn-digit binary numbers, beginning with0
(resp.1).

ACCT Pamporovo’08 – p. 15/32

2. Binary PPRM transform

Therefore:
aT

[0] = Mn−1.b
T
[0],

aT
[1] = Mn−1.b

T
[0] ⊕ Mn−1.b

T
[1] = aT

[0] ⊕ Mn−1.b
T
[1].

(6)

These equalitiesdefine recursivelythe solution of the
problem. They show how it can be obtained by the
solutions of its subproblems. So the problem exhibits the
optimal substructure property– the first key reason to
apply the dynamic-programming strategy. The second
one –overlapping subproblems– is also shown in (6). If
we are computinga recursively, we have to compute first
a[0] (recursively), and afterwarda[1] (recursively), which
implies computing ofa[0] again.

ACCT Pamporovo’08 – p. 16/32

2. Binary PPRM transform

We will replace the recursion by an iteration and will
compute the vectora "bottom-up". The iteration should
performn steps. Starting from the vectorb (as an input),
atk-th step,k = 1, 2, . . . , n, we consider the current
vectorb as divided into two kinds of blocks:sourceand
target, of size = 2k−1, which alternate with each other.
At each step, every source block isadded(by a
component-wise XOR) to the next block, which is its
target block. The result is assigned to the current vector
b. After n steps, the vectorb is transformed to vectora.

ACCT Pamporovo’08 – p. 17/32

2. Binary PPRM transform
Example. Let f(x, y, z) = (0, 1, 1, 0, 1, 0, 1, 1) = b.

Thereforef(x, y, z) = z ⊕ y ⊕ x ⊕ xy ⊕ xyz.

ACCT Pamporovo’08 – p. 18/32

2. Binary PPRM transform

If the vectorb is represented by an arrayb of 2n bytes,
the pseudo code of this algorithm is:
Binary_PPRM_Transform (b, n)

1) blocksize= 1;

2) for k= 1 to n do

3) source= 0; //beginning of the source block

4) while source < 2ˆn do

5) target= source + blocksize; //beg. of target bl.

6) for i= 0 to blocksize-1 do

7) b[target+i]= b[target+i] XOR b[source+i];

8) source= source+2 * blocksize; //beg. of source bl.

9) blocksize= 2 * blocksize;

10) return b; //b is already transformed to a

ACCT Pamporovo’08 – p. 19/32

2. Binary PPRM transform

The correctness of the algorithm can be proved easily
by induction onn.

When the input size is2n, the algorithm has a time
complexityΘ(n.2n−1) and space complexityΘ(2n).

ACCT Pamporovo’08 – p. 20/32

2. Binary PPRM transform

The new version of this algorithm is obtained by
applying a bit-wise representation of the vectorb
and bit-wise operations: masks, shifts, XORs.
When the bit-wise representation of vectorb takes up
m computer words, the time complexity becomes
Θ(m.n) generally. This is the best one, known to us.

For comparison, we have generated all Boolean
functions of 5 variables and we have performed the
PPRM transform over each of them. When the new
version of the algorithm uses a 32-bit computer word, it
runs 22 times faster.

ACCT Pamporovo’08 – p. 21/32

3. Ternary PPRM transform

The ternary FPRM and some other transforms are
investigated intensively by Falkowski, Fu, Lozano, etc.
These transforms are determined by the corresponding
matrices, defined recursively or by Kronecker product.
These matrices are used for buildingrecursive
algorithms, performing these expansions.
Computing of the ternary PPRM transform is an
important part for some of them or for other fast
algorithms.

ACCT Pamporovo’08 – p. 22/32

3. Ternary PPRM transform

Let f(xn−1, xn−2, . . . , x0) be a ternary function,
represented by its vector of valuesb = (b0, b1, . . . , b3n−1).
It is known that the ternaryforward PPRM transform
between the coefficient vectora = (a0, a1, . . . , a3n−1) in
Eq. (2) and the vectorb is defined by the3n × 3n matrix
Tn as:

aT = Tn.b
T over GF (3).(7)

The matrixTn is defined recursively, or by Kronecker
product:

ACCT Pamporovo’08 – p. 23/32

3. Ternary PPRM transform

T1 =









1 0 0

0 2 1

2 2 2









, Tn =









Tn−1 On−1 On−1

On−1 2.Tn−1 Tn−1

2.Tn−1 2.Tn−1 2.Tn−1









, or(8)

Tn = T1 ⊗ Tn−1 =
n

⊗

i=1

T1,

whereTn−1 is the corresponding transform matrix of
dimension3n−1 × 3n−1, andOn−1 is a3n−1 × 3n−1 zero
matrix.

ACCT Pamporovo’08 – p. 24/32

3. Ternary PPRM transform

Using Eq. (8), we rewrite Eq. (7) as:

aT = Tn.bT =









Tn−1 On−1 On−1

On−1 2.Tn−1 Tn−1

2.Tn−1 2.Tn−1 2.Tn−1

















bT

[0]

bT

[1]

bT

[2]









=(9)

=









Tn−1.b
T

[0]

2.Tn−1.b
T

[1] + Tn−1.b
T

[2]

2.Tn−1.b
T

[0] +2.Tn−1.b
T

[1] +2.Tn−1.b
T

[2]









=









aT

[0]

aT

[1]

aT

[2]









over GF (3),

wherev[0] (resp.v[1], v[2]) denotes the sub-vector of the
n-dimensional ternary vectorv, which coordinates are
labeled byn-digit ternary numbers, beginning with0
(resp.1, 2).

ACCT Pamporovo’08 – p. 25/32

3. Ternary PPRM transform

Therefore:

aT
[0] = Tn−1.b

T
[0]

aT
[1] = 2.Tn−1.b

T
[1] + Tn−1.b

T
[2]

aT
[2] = 2.(Tn−1.b

T
[0] + Tn−1.b

T
[1] + Tn−1.b

T
[2])

(10)

Equalities (10) determine the solution recursively. The
reasons to apply the dynamic-programming strategy are
the same as in the binary case. If the multiplications of
the typeTn−1.b

T
[i] are already computed, the final solution

can be obtained by 3 additions of vectors and 2
multiplications of vector by a scalar inGF (3).

ACCT Pamporovo’08 – p. 26/32

3. Ternary PPRM transform

Thinking about them as source and target blocks, we
replace them by 4 additions between blocks inGF (3),
as it is shown on Fig. 1, forn = 1. Obviously, some
source and target blocks (of size 1, whenn = 1) change
their roles.

Figure 1: Forn = 1, vectorb is transformed to vectora

by 4 additions inGF (3).

ACCT Pamporovo’08 – p. 27/32

3. Ternary PPRM transform

We extend this model of computing for an arbitraryn.
So we obtain an algorithm, which starts from the given
vectorb (as an input) and performsn steps. At thek-th
step, the current vectorb is divided into3n−k+1 blocks
of size3k−1. For each triple of consecutive blocks the
algorithm performs component-wise additions (in
GF (3)) between the blocks in the triple, following the
scheme in Fig. 1.

If the vectorb is represented by an arrayb of 3n bytes,
the pseudo code of this algorithm is:

ACCT Pamporovo’08 – p. 28/32

3. Ternary PPRM transform

Ternary_PPRM_Transform (b, n)

1) blocksize= 1;

2) for k= 1 to n do

3) base= 0; //beg. of the 0-block

4) while base < 3ˆn do

5) first= base + blocksize; //beg. of I block

6) second= first + blocksize; //beg. of II block

7) AddBlock (first, second, blocksize);

8) AddBlock (second, first, blocksize);

9) AddBlock (base, second, blocksize);

10) AddBlock (second, second, blocksize);

11) base= base + 3 * blocksize; //beg. next triple

12) blocksize= 3 * blocksize;

13) return b; //b is already transformed to a

ACCT Pamporovo’08 – p. 29/32

3. Ternary PPRM transform

ProcedureAddBlock (s, t, size) adds the block
(sub-vector), starting from coordinates, to the block,
starting from coordinatet . It performssize
component-wise additions inGF (3) between these
blocks.

The correctness of the algorithm can be proved strongly
by induction onn.

The space complexity of the algorithm isΘ(3n), the
same as the size of input.

Its time complexity isΘ(n.3n−1).

ACCT Pamporovo’08 – p. 30/32

3. Ternary PPRM transform

For comparison, Falkowski and Lozanoa refer to an
algorithm for fast computing of ternary PPRM transform,
which performsn.3n additions and4n.3n−1

multiplications.
aColumn polarity matrix algorithm for ternary fixed polarity

Reed–Muller expansions”,J. of Circuits, Systems, and Computers,

Vol. 15, No. 2, 2006, pp. 243-262)

ACCT Pamporovo’08 – p. 31/32

4. Conclusions

We have used the dynamic-programming strategy to
develop three algorithms. They are based on matrices,
defined recursively or by Kronecker product, which
determine the PPRM transforms overGF (2) andGF (3).
The model of building the given algorithms can be
extended and applied for fast computing of:

other FPRM expansions over the considered fields,
or other finite fields with prime number of elements;

matrix-vector multiplication when the matrix is
defined recursively.

The proposed algorithms have better time complexities
in comparison with other algorithms, known to us.

ACCT Pamporovo’08 – p. 32/32

	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction
	1. Introduction
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	2. Binary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	3. Ternary PPRM transform
	4. Conclusions

